segunda-feira, 16 de junho de 2008

Leia as informações sobre o Rodeio Festival e escreva por extenso os números que aparecem

1)Leia as informações sobre o Rodeio Festival e escreva por extenso os números que aparecem:


Durante 10 dias uma arena montada no Cibratel agitou Itanhaém. Cerca de 38.500 pessoas passavam por lá a cada noite. Foram arrecadados mais de 1.457.356 quilos de alimentos. Desses 567.987 quilos de açúcar, 7.901 de arroz. Entre outros alimentos. Esses alimentos serão doados às famílias carentes de Itanhaém. São mais de 893 famílias cadastradas no programa do Fundo de Solidariedade.

dias___________

alimentos__________

açúcar________________

arroz__________

famílias____________

pessoas______________



2) Situações problemas:

A) Os organizadores do Rodeio trouxeram 40 peões. Se cada peão por noite ficou montado cerca de 6 segundos, no total de 5 noites , quantos segundos ficaram montados os peões juntos? R: ________________

B) Um patrocinador ofereceu um prêmio de 8400 reais para ser repartido igualmente entre os 24 peões que marcassem mais pontos . Quantos reais recebeu cadapeão? R: _______________

C) No ultimo dia D. Maria chegou a arena por volta das 15:00 horas. O Show de Bruno e Marrone começou as 23:45. Quantas horas D. Maria teve que esperar para ver o Show? R: _____________________

CÁLCULOSd) A arena foi montada para 40.000 pessoas. No show de Rick e Renner, que choveu, cerca de 28.657 pessoas compareceram ao local. Quantas pessoas ainda poderiam ter ido? R:______________________________

Atividades de matemática para quarto ano

1- Giovanni 327 bolinhas de gude. Felipe tem 285. Quantas bolinhas os dois têm juntos?

2- Raquel tem 5 pacotes com 24 figurinhas cada. Quantas figurinhas ela tem no total?

3 -Rubert alugou três filmes de terror por 5 reais cada e quatro filmes de ação por 7 reais cada. Para pagar ele usou uma nota de 50 reais. Quanto ele recebeu de troco?

4 -Um mercado comprou 1230 pacotes de leite. Já vendeu 856 pacotes. Quantos pacotes de leite sobraram?

5- Efetue com atenção:

a) 8327 + 2654 =

b) 4098 + 989 =

c)2780 – 567 =

d) 7543 – 2241 =

e) 47 x 5 =

f) 352 x 2 =

g) 125 x 4 =

h) 22 x 10 =

i) 46 x 23 =



Ausência....


Dias de gripe...
Festa Junina...
Aulas particulares...
Monografia...
TCM....
.... estes foram os motivos da minha lonnnnnnnnnnnnnnnga ausência....

terça-feira, 3 de junho de 2008

MATERIAIS MANIPULATIVOS NO ENSINO DE MATEMÁTICA A CRIANÇAS DE 7 A 14 ANOS

Período das operações concretas


Profa. Léa da Cruz Fagundes
Laboratório de Metodologia e Currículo - Departamento de Ensino e Currículo
Faculdade de Educação - UFRG

É de consenso geral que o homem comum, numa sociedade relativamente simples, necessita bem pouca matemática para solucionar os problemas da vida diária.

Entretanto, as profundas mudanças econômicas e sociológicas, paralelas a implosão do conhecimento cientifico, as transformações ora benfazejas, ora catastróficas da técnica, as tendências gerais à democratização da sociedade, e os conflitos que resultam de tudo isso, criam condições de vida cada vez mais complexas.

Administradores e especialistas em todos os núcleos da civilização atual ocupam-se da replanificação do ensino, propondo e instituindo reformas sucessivas. Pode-se, porém, observar que o crescimento do numero de alunos na extraordinária expansão ocorrida no ensino não se deve somente ao aumento da população, mas também a medidas de justiça social que visam facilitar e garantir o acesso à escola e prolongar a escolaridade obrigatória para crianças e adolescentes.

Essa escolaridade pretende também a formação cientifica para o homem de uma sociedade complexa.

Analisando os aspectos positivos no desenvolvimento da educação, Jean Piaget (Psicologia e Pedagogia, 1970) alerta para os problemas que substituem quanto a eficiência dos meios empregados, pois "nem sempre fica demonstrado se esta expansão corresponde a um resultado feliz, a uma vitória da educação."

Ele exemplifica: - para analisar os progressos da medicina pouco ajudaria uma estatística das doenças tratadas, pois seria necessário um estudo dos resultados dos tratamentos em relação a sua extensão social. "O que continua a faltar à pedagogia científica é este gênero de controle, e daí porque o progresso apresentado deixa ainda em aberto uma serie indefinida de problemas."

Particularmente estamos investigando os problemas do ensino da matemática na Área de Ciências do Currículo de 1° grau. Acreditamos que é imprescindível considerar tanto:

  • a importância das noções a serem ensinadas às crianças atendendo ao mesmo tempo necessidades de sobrevivência e necessidade de desenvolvimento social, como também;
  • as dificuldades de assimilação dessas noções mais importantes, pela maioria das crianças em todos os tipos de escola.

Ao considerar as noções que deveriam ser selecionadas é indispensável definir.

O que se entende por Matemática?

O que vem acontecendo com a Matemática nestes últimos decênios? Porque a indagação Matemática mudou e continua mudando? Em que consistem essas mudanças?

Gustave Choquet (apud Castelnuovo. 1973), expressa em poucas frases a diferença entre a matemática clássica e a matemática de hoje: O "matemático tradicional" estudava argumentos particulares que agrupava conforme o grau de dificuldades - aritmética, álgebra, geometria, trigonometria, etc. A descoberta das grandes estruturas mudou o plano e a trama de construção de nosso mundo."

A matemática clássica tomava como elementos base os objetos matemáticos; desde a antigüidade até o século passado - houve concordância sobre a qualidade desses objetos, eram, como dizia, Platão, os números, o tamanho, a forma; e não estava a nosso alcance atribuir-lhes propriedades arbitrárias porque se consideravam separados de suas próprias estruturas. Dá-se hoje o nome de "matemática moderna" aquela cuja essência não se deve à qualidade do material utilizado para as bases, mas às leis operatórias que permitirem a sua construção, explica Castelnuovo (1973).

A matemática, afirma Dienes (1970), não deve ser considerada como um conjunto de técnicas, embora tais técnicas sejam claramente essenciais para a sua utilização efetiva. Ela deve ser vista antes como uma estrutura de relações. Uma proposição matemática é relativa a alguma conexão dentro da estrutura; para exprimir tal conexão temos que usar um simbolismo que é uma espécie de linguagem inventada para comunicar partes da estrutura de uma pessoa para a outra.

Em nossas escolas, proposições formais sobre estruturas estão continuamente sendo feitas sem que as estruturas propriamente ditas sejam compreendidas.

Por matemática pode-se, então, entender as conexões estruturais efetivas entre conceitos ligados à idéias de número e de forma, ao mesmo tempo que suas aplicações a problemas tais como são postos na realidade.

Por aprendizado de matemática deve-se, portanto, entender a apreensão de tais conexões, bem como suas simbolizações, e a aquisição da capacidade de aplicar os conceitos formados a situações reais que ocorrem no mundo.

A matemática tem um valor operatório. Ela possibilita a construção de modelos qualitativo-quantitativos que a ajudarão a elaborar sistemas explicativos para os eventos do meio em que vivemos.

- Que objetivos perseguimos em nossas civilizações modernas ensinando matemática às crianças?

Certamente, responde Jean Diedonné (1955), não é fazê-las conhecer a seqüência dos números primos ou uma coleção de teoremas sobre bissetrizes do triângulo, sem utilização alguma. É antes ensiná-las a ordenar e encadear seus pensamentos segundo o método de que servem os matemáticos.

É a essência do método que deve ser objeto deste ensino, os tópicos ensinados devem se constituir em ilustrações bem escolhidas, se o que se deseja formar são cidadãos autônomos, envolvidos num processo de educação permanente.

Mas de que maneira poderão os alunos chegar de forma independente a propor indagações e a resolver problemas?

Que meios de trabalho, que tópicos, que situações é preciso organizar para impulsioná-los?

Que procedimentos permitirão, de modo elementar, que a estrutura de um conteúdo surta este efeito formativo?

A psicologia estende a mão à lógica e mostra, finalmente, que a inteligência da criança é orientada espontaneamente para a organização de certas estruturas operatórias que são isomorfas às que os matemáticos colocam como início de sua construção, ou que os lógicos encontram nos sistemas que elaboram.

Em seu trabalho, Piaget (1955) não afirma que as regras lógicas sejam leis do pensamento. O que ele faz é adaptar a lógica ao mecanismo real do pensamento, conseguindo descrever as diferentes fases do desenvolvimento intelectual pelas estruturas elaboradas pela lógica.

"Do ponto de vista prático, a questão para o educador seria escolher entre métodos formalistas fundados sobre a lógica e métodos ativos, baseados na psicologia: a finalidade do ensino matemático será alcançar tanto o rigor lógico do raciocínio quanto a compreensão, mas só a psicologia poderá fornecer ao pedagogo a maneira pela qual esse fim será alcançado."

Se o edifício matemático, repousa sobre "estruturas" que por sua vez correspondem às estruturas da inteligência, é na organização progressiva dessas estruturas operatórias que é preciso basear a didática."

Entretanto, a situação atual do ensino da matemática é, pode-se dizer, paradoxal. Os programas são reformulados buscando essa "organização progressiva" das estruturas algébricas, topológicas e de ordem, utilizam nova simbologia e incluem noções de lógica matemática. Mas a preferência dos alunos pelo estudo da matemática não tem aumentado, enquanto que as dificuldades de assimilação de noções importantes aumentam com o crescimento do alunado, tanto em 1° quanto em 2° grau.

QUE FATORES ESTÃO INTERVINDO NA ASSIMILAÇÃO DAS NOÇÕES
MAIS IMPORTANTES PELA MAIORIA DAS CRIANÇAS?

- Em primeiro lugar, será necessário analisar se a organização das estruturas matemáticas, na seqüência curricular, corresponde ao nível de desenvolvimento das estruturas operatórias da inteligência em cada grupo de alunos.

O ponto essencial é fazer com que os alunos desenvolvam capacidades operatórias de modo correspondente à tomada de consciência suscita pela organização de ensino.

- Em segundo lugar, a ação pedagógica, constituindo-se em num sistema de interação entre pessoas, envolve atitudes, valores, sentimentos, que muito pouco são considerados no ensino matemático. Por exemplo, o professor em geral se preocupa mais com o êxito do aluno na realização do cálculo, com a sua habilidade de dar respostas "certas" do que os danos que podem causar ao auto-conceito de uma criança ou de um adolescente as experiências de insucesso na resolução de problemas.

Pellerey (1976) comentando sobre o fato de que as atitudes dos adultos com a matemática está freqüentemente enraizada na infância, refere que, em torno da 3ª serie, uma criança já poder ter atitudes definidas e persistentes do tipo negativo. As experiências ansiosas e os traumas do tipo progressivo podem ser encontrados nas primeiras séries da escola primaria.

Moojen Kiguel (1976) constatou que, entre 19 sintomas de dificuldades de aprendizagem listados, a freqüência de dificuldades de aprendizagem da matemática foi único sintoma que apresentou um aumento gradativo a medida que a criança avança da 1ª para a 3ª serie do primeiro grau.

- Em terceiro lugar, é preciso considerar as experiências de aprendizagem que são proporcionadas pelo currículo escolar.

Piaget (1972) afirma que a experiência de objetos do ambiente físico é obviamente um fator básico no desenvolvimento das estruturas cognitivas. Mas "há dois tipos de experiências que são psicologicamente muito diferentes e esta diferença é muito importante do ponto de vista pedagógico. Primeiro, o que ele chama de experiência física e em segundo, o que ele chama de experiência lógico-matemática.

O conhecimento, segundo Piaget, não é uma cópia da realidade. Não resulta de olhar e fazer simplesmente uma cópia mental, uma imagem de um objeto. Para conhecer um objeto, um fato, é preciso agir sobre ele, modificá-lo, transformá-lo, compreender o processo dessa transformação e, como conseqüência entender a maneira como o objeto é construído.

A experiência física consiste em agir sobre o objeto e conseguir algum conhecimento por abstração, do objeto. Por exemplo, descobrir que um cachimbo é mais pesado do que um relógio,. A criança só pesará ambos e encontrará a diferença nos próprios objetos.

Na experiência lógico-matemática, o conhecimento não é extraído dos objetos, mas das ações realizadas sobre os objetos pelo sujeito. E Piaget exemplifica: - para contar bolinhas de gude no pátio, a criança as põe em fila e conta de um até dez. quando termina de contar numa determinada direção, começa de outro lado e conta de novo. Descobre então a maravilha que são 10 da direita para a esquerda, ou da esquerda para a direita. Põe as bolinhas em um círculo e conta de novo: 10. Muda o arranjo e de novo conta 10. O que ela descobriu? Ela não descobriu uma propriedade das bolinhas, mas uma propriedade de ação de ordenar. As bolinha não tinham ordem alguma. Foi a sua ação que introduziu uma ordem linear, uma ordem cíclica, ou de qualquer outro tipo. Ela também descobre que a soma é independente da ordem., isto é, a ação de "botar junto" é independente da ação de "ordenar", quando ela realiza a operação de juntar, contar, separar e contar novamente. Não é a propriedade física das bolinhas que a experiência mostra, mas as propriedades das ações

Este é o ponto de partida da educação matemática. A educação subseqüente consistiria em interiorizar estas ações, afirma Piaget, e combiná-las sem precisar das bolinhas. O matemático não precisa de suas bolinhas de gude. Ele combina suas operações simplesmente com símbolos.

O ponto de partida da educação lógico-matemática não é uma experiência no sentido usado pelos empiristas - é o começo da coordenação de ações. Mas esta coordenação de ações antes de estágio operatório formal precisa do amparo do material concreto.

Montessori (OREM, 1975) fala do "espírito matemático" da criança - aquela parte da inteligência que reflete uma tendência natural à classificação, à mensuração. A criança se inclina a organizar e ordenar seu quadro de vida, edifica nele, a partir de suas experiências "modelos" ou "mapas" deste meio - eles lhe servirão de base, no futuro, para tomar decisões. Na criança essa necessidade de qualificar, de abstrair e de interiorizar o que para ela apresenta uma necessidade lógica, só pode ser satisfeita se seu quadro de vida não é incoerente e pobre.

A teoria neurofisiológica do Dr. O. Hebb (apud Orem, 1975) oferece uma perspectiva que embasa o pensamento de Montessori. Ele acentua que a experiência, a sensação, a percepção, as interações humanas desenvolvem o sentido do real, a atenção ao meio físico, a descoberta progressiva de significações. Em L´Organization du Comportment, o Dr. Hebb apresenta sua teoria segundo a qual toda primeira experiência desempenha um papel central, pois uma excitação repetida dos órgãos receptores conduz à organização de unidades funcionais que ele chama de "assembléias de células". Num estágio mais avançado as assembléias de células se combinariam para formar "seqüências de fases". Na medida em que uma ambiência que estimula é determinante para favorecer o desenvolvimento intelectual, as experiências da criança terão grande influência sobre o modo pelo qual, tornado adulto, saberá resolverá seus problemas.

Num meio inerte, o sistema nervoso pode não chegar a adquirir as estruturas necessárias a cada indivíduo para aprender este mundo de complexidade sempre crescente. Será preciso oferecer às crianças simultaneamente apelo a diversas dimensões sensoriais ao mesmo tempo que à atividade experimental para que percepções e operações se interconectam.

Se deixarmos a criança entregue a seus próprios recursos num meio carente não é de se admirar que ela se torne um problema escolar.

A UTILIZAÇÃO DE MATERIAIS MANIPULATIVOS NO ENSINO

Como membros do Grupo de Estudos Cognitivos e do Grupo de Estudos sobre o Ensino de Matemática de Porto Alegre temos participado de encontros com grupos internacionais em que se expressa sempre a mesma preocupação com o ensino: - as mudanças que ocorrem no seio da sociedade, o desenvolvimento interno da ciência e as descobertas da psicologia experimental não chegaram ainda a produzir mudanças efetivas no trabalho do professor em sala de aula.

Ainda que utilizando manuais que se intitulem "modernos", enchendo cadernos com novos símbolos, o aluno é tratado como indivíduo de um grupo uniforme que deve permanecer "receptivo". As informações abstratas são transmitidas verbalmente, e "logicamente" pelo professor, com o auxílio do giz e quadro-verde. Folhas de papel mimeografado, com definições e exercícios, quando são utilizadas, são consideradas como grande conquista.

Os maus resultados do ensino, o rendimento precário do aluno, são atribuídos ou à "modernização" da matemática, ou à incapacidade para aprender. Essa incapacidade chega até a ser muito bem aceita por grande número de professores em todos os graus que, por insuficiente formação psicológica, acreditam ser o pensamento matemático de tal qualidade que só uma minoria de seres bem dotados poderia desenvolvê-lo.

Por que a revolução que se iniciou na didática desde o século XVII, com Comênius, não alterou ainda este quadro? Os métodos "intuitivos" foram ainda preconizados por Rousseau (1712-1778), Herbart (1776-1841), incorporando-se ao ensino o material concreto.

A utilização de material concreto abriu novas perspectivas mas sofreu as limitações da fundamentação psicológica que a preconizava.

Esses métodos "intuitivos", afirma Piaget (1970), agora já clássicos, renascem sem cessar das próprias cinzas. Eles constituem, na verdade, um progresso em relação aos processos puramente verbais, ou formais. Mas de modo algum são suficientes para desenvolver a necessária atividade operatória da inteligência para a aquisição do conhecimento.

A insuficiência da concepção de ensino que considera o aluno um receptor em lugar de um criador, continuou em nosso século a provocar numerosos movimentos renovadores: - Dewey (1859-1932), Claparède (1873-1940), Kerschensteiner (1854-1932) preconizam a chamada "escola ativa". O recurso fundamental dessa nova escola é "a atividade construtiva do espírito dominado pela dúvida" (Dewey, 1946).

A proposição dos métodos "ativos" – investigação experimental – verificação – tendo como centro do processo o aluno, tem como objetivo a atividade mental do aluno para aquisição do conhecimento.

No ensino da matemática, entretanto, esse objetivo não tem sido perseguido.

"Devido à formação psicológica insuficiente da maioria dos educadores, há duas confusões distintas:

1º - pensar que toda "atividade" do sujeito, ou da criança se reduz à ações concretas. Isso é verdadeiro para os graus elementares, não o sendo para níveis superiores, onde o aluno pode ser inteiramente ativo no sentido de uma redescoberta pessoal pela reflexão interior e abstrata;

2º - acreditar que uma atividade que incida sobre objetos concretos se reduza a processos figurativos, isto é, que forneça uma espécie de cópia fiel, em percepções ou em imagens mentais."

Exemplifica Piaget que a utilização de materiais concretos pode-se dar em sentidos até opostos. Veja-se as barrinhas de Cuisenaire: podem dar lugar a

  • utilizações operatórias, se a criança descobre por si mesma as diversas operações através de manipulações espontâneas
  • utilizações essencialmente intuitivas ou figurativas se o professor se limita a demonstrações exteriores onde a criança só tem a oportunidade de ler figurações acabadas.

Bergson comparava a atividade operatória da inteligência aos processos cinematográficos. Infelizmente falhou nos problemas das operações, afirma Piaget, e não viu em que a transformação operatória constitui um ato verdadeiro, contínuo e criador.

"O construtivismo operatório da inteligência não se reduz às imagens de um filme, antes se pode compará-lo ao motor que garante o desenrolar das imagens, e sobretudo dos mecanismos cibernéticos que assegurariam um tal desenrolar graças a uma lógica e aos processos auto-reguladores e auto-corretores".

"Assim, o recurso à experiência e à ação sobre materiais concretos, de um modo geral, uma pedagogia chamada "ativa" enquanto procedimento de iniciação matemática, em nada compromete o rigor dedutivo ulterior. Ao contrário, prepara-o, proporcionando-lhe bases reais e não simplesmente verbais."

A utilização de materiais concretos no ensino de 1º Grau deve ser organizada de modo a propiciar a cada aluno situações de experiências físicas bem como situações de experiências lógico-matemáticas, onde ele possa realizar tanto abstrações empíricas quanto abstrações reflexivas.

Gaba (1975) propõe o seguinte esquema para utilização de material concreto nas aulas de matemática:

Manipulação de objetos concretos

Ações realizadas com objetos

Obtenção de relações

Interiorização dessas relações

Aquisição e formulação do conceito

Integração do conceito a conceitos anteriores (estruturação)

Aplicação ou reconhecimento da estrutura em novas situações

Dienes (1974) propõe um modelo de seis etapas para a construção do modelo matemático:

1ª - Jogo livre enriquecido num ambiente enriquecido por materiais

2ª - Jogos estruturados, obedecendo a regras

3ª - Comparação dos jogos que tenham estruturas isomorfas

4ª - Representação da abstração lógico-matemática

5ª - Análise das propriedades dessa representação

6ª - Demonstração dedutiva das propriedades estruturais do conceito, em linguagem matemática.

Reconhecemos que utilizar materiais numa metodologia "ativa" é muito mais trabalhoso para o professor, alem de exigir-lhe uma formação bem mais específica, que as próprias universidades tardam em incluir nos currículos de suas licenciaturas.

Tivemos ocasião de avaliar alguns de seus resultados no Projeto Reformulação Metodológica no Ensino de Matemática no 1º Grau (INEP/GEEMPA, 1974) e no Projeto Ensino Integrado de Ciências e Matemática no 1º Grau (PREMEN/UFRGS, 1976). Em ambos, a mudança de atitude revelou-se fundamental. Mesmo um professor com poucos recursos materiais, trabalhando com crianças socialmente carentes, pode utilizar o método ativo, com materiais do próprio ambiente, até mesmo sucata doméstica. Mas é preciso que ele apresente uma certa sensibilidade para descobrir como seus alunos "pensam", para respeitar e estimular sua iniciativa e sua atividade; uma crença firme de que eles têm possibilidade de se desenvolverem; e uma aquisição razoável dos conceitos que ele vai ajudar os alunos a construírem.

Em artigo publicado na revista Archimede, nº 5, 1962, Emma Castelnuovo relata um de seus trabalhos experimentais que ilustra a utilização de materiais, com simplicidade, em sala de aula, atendendo aos princípios de uma pedagogia ativa:

"Propõe-se a um grupo de crianças o problema de desenhar um retângulo tendo a base três vezes maior do que a altura.

Como as crianças efetuam a construção da figura?

- Alguns valendo-se da regra fixam uma certa medida para a altura, triplicam essa medida e desenham a base; outros valem-se de uma folha quadriculada para desenhar a altura do mesmo tamanho do lado do quadrinho, e a base de três desses quadrinhos; outros ainda desenham um retângulo sem tomar as medidas, mas põem em evidência que a base é o triplo da altura dividindo-a em três partes que deveriam ser cada uma igual à altura, mas isso nem sempre acontece.

Depois de terem feito o desenho, faz-se a pergunta:

- Se fosse dado o comprimento do perímetro do retângulo, seria impossível determinar o comprimento da base e o da altura?

As respostas dadas foram as mais inesperadas:

- Divide-se o perímetro por 2!... por 4!... por 3!

Ficamos perplexos porque observamos que os alunos não observam, em absoluto o retângulo que desenharam em seus cadernos, e que, mesmo estimulados a examinar a desenho que traçaram, eles próprios "não o vêem".

Reflitamos. Observar esse retângulo significa decompor seu contorno nos elementos que o formam, significa pensar que a base está composta por três elementos iguais entre si, e iguais à altura; trata-se de conceber uma equação de primeiro grau. A observação que se pode fazer é que a criança, mesmo que o tenha desenhado, só vê o retângulo como um todo inseparável, não consegue analisá-lo.

Para um outro grupo de crianças apresenta-se o mesmo problema, porém utilizando-se palitos. Eles usam 1 palito para a altura e 3 para a base1 ou 2 para a altura e 6 para a base, etc... Depois dessa construção, todos os alunos sabem dizer imediatamente que procedimento utilizar para encontrar o comprimento das duas dimensões.

Que diferença há entre esta construção e o desenho?

Aqui, ao efetuar a construção, o aluno se dá conta das relações das partes com o todo. E o palito, esse material insignificante, assume para ele um valor enorme - é o meio para resolver problemas construindo e contando; operações que significam não verbalizar.

Além disso, a vantagem que um material oferece em relação ao desenho, é a mobilidade de seus elementos. Pode-se construir com o mesmo número de palitos outras figuras, por exemplo, um quadrado. Teria a mesma área do retângulo? Os conceitos de perímetro e de área, postos em confrontação, se aclaram reciprocamente.

Ainda a simples confrontação dos retângulos construídos com diferentes números de palitos, com a mesma relação, abre as portas para a teoria da semelhança.

É possível continuar considerando problemas análogos sobre muitas figuras geométricas, ou sobre questões de aritmética que considerem o conceito de relação, e chegar a uma sistematização. Nasce espontânea a "entrada nas equações". Ao momento heurístico segue um êxtase! A seguir se deduz procedimentos em casos do mesmo gênero."

Certamente reconhecemos que a educação científica deve ter como finalidade fazer passar de uma visão mágica das coisas que nos rodeiam, a um conhecimento objetivo e a um sereno julgamento dos fenômenos naturais; deve ser uma contínua ascensão na arte de observar, de medir, hipotetizar e deduzir, de controlar e verificar. Esta atividade científica expressa a própria operatividade do pensamento matemático na construção de abstrações a partir do real.

REFERÊNCIAS:

CASTELNUOVO, Emma. Didáctica de la Matemática Moderna. México, Ed. Trillas, 1973.

DIENES, Z. P. Aprendizado Moderno da Matemática. Rio, Zahar, 1970.

GABBA, Pablo J. Matemática para Maestros. Buenos Aires, Ed. Marymar, 1975.

LAVATELLI, Celia and STENDLER, Faith. Readings in Child Behaviour and Development. Harcourt Inc. New York, 1972.

MOOJEN Kiguel, Sonia. Avaliação de Sintomas de Dificuldades de Aprendizagem em Crianças de 1ª, 2ª, e 3ª séries do 1º Grau. Porto Alegre, Redacta, 1976 (Dissertação de Mestrado).

OREM, R. C. Le Manuel Montessori. Éd. Denoël/Gonthier, Paris,1975.

PIAGET, Jean. Psicologia e Pedagogia. Ed. Forense, Rio, 1970.

Association des Professeurs de Mathématiques de L'Enseignement Public. La Mathématique a l' École ÊLÉMENTAIRE. Paris, 1972.

Ensino e Aprendizagem de Forma Criativa: Utilizar as Narrações das Crianças

O projecto dos Mundos da Matemática das Crianças procura integrar as experiências sociais, emocionais e culturais dos alunos na matemática da turma. Durante sete anos, nós temos estado a desenvolver nas turmas uma investigação de desafio conceptual? Com base no currículo da matemática chamado Mundos da Matemática das Crianças (CMW) para o Jardim até a terceira classe. Consolidamos as experiências, os interesses e o conhecimento matemático prático de pessoas individuais que crianças diversas trazem para as nossas aulas. O nosso projecto de investigação colaborativa tem sido levado a cabo nas escolas urbanas de melhorias sub-representadas, principalmente anglo-latinos? Falantes e Espano-Latinos? Crianças falantes e em Inglês? Falantes de turmas avançadas? Médias? Para garantir que o nosso trabalho atravesse fronteiras sócio-económicas. A componente familiar do CMW foi descrita no De La Cruz (1999). Veja o artigo sobre dados referentes ao rendimento comparativo excelente de crianças no CMW.

Neste artigo, nós focamos duas actividades centrais e relacionadas do CMW: (1) ligação de actividades matemáticas na turma a experiências matemáticas das crianças fora da turma, e (2) criação de um ambiente rico e sustentado para a aprendizagem em escrever, resolver e explicar formas de solução de problemas orais. A solução de problemas orais tem sido tradicionalmente difícil para muitas crianças, particularmente aquelas em relação às quais o inglês é uma segunda língua. Problemas orais são muitas vezes negligenciados e não são atribuídos como tarefas a essas crianças. Nós constatamos que centrar as nossas turmas em tais problemas, utilizando problemas de dificuldades maior, e o apoio do uso da língua pelas crianças permita-lhes resolver problemas orais prontamente. Para mais pormenores, vide Fuson et al. (1997). Na nossa descrição que se segue, temos vozes de alguns dos nossos professores de turma a comentar sobre os vários aspectos de ensino utilizando vidas das crianças.


LIGAÇÕES TEÓRICAS DO CURRÍCULO O nosso projecto faz uso do modelo Vygotskian para revelar, formular e resolver problemas matemáticos a partir de experiências de crianças. Este modelo descreve uma forma pela qual os professores consolidam o conhecimento anterior das crianças em relação a várias situações para facilitar a construção dos alunos no entendimento de conceitos da matemática, simbolismo e problemas matemáticos formais (vide Fuson et al. [1997] para mais pormenores). O desenvolvimento de narrativas múltiplas de diferentes experiências das crianças proporcionam um quadro que é construído pelo professor e pelas crianças e dentro do qual os professores relacionam novas ideias matemáticas às vidas das crianças. Esta consolidação no conhecimento das crianças é equilibrada pelo outro aspecto vital de Vygotskian da nossa abordagem: ensinar dentro da "zona de desenvolvimento aproximativo" (ZPD). A ZPD, ou a Zona de Aprendizagem, é o que as crianças podem realizar com assistência. O professor orienta as crianças desde um ponto de partida a um conhecimento matemático mais avançado. Este conhecimento inclui ser melhor em ouvir, explicar e ajudar um ao outro a compreender. Aprender métodos de solução mais avançados, eficazes e correctos; e aprender o simbolismo, a linguagem e novas ideias matemáticas. O professor, e eventualmente outras crianças, ajudam os alunos a progredirem em todas estas vias. O professor é orientado por uma visão ambiciosa do crescimento no conhecimento das crianças até ao fim do ano, e é apoiado pelo currículo CMW.

INICIAR: ELICITAR E UTILIZAR HISTÓRIAS DAS CRIANÇAS: Algumas crianças estão ansiosas e prontas a partilhar as suas histórias. Outras sentem-se inicialmente muito envergonhadas para relatar as suas histórias à turma e, portanto, elas desenham ou escrevem as suas histórias. Eventualmente, todas as crianças participam. Pedir que as crianças tragam fotografias das suas casas ou sobre uma viagem, ou qualquer outro assunto, pode ajudar a intrigar histórias e dar aos professores algum conhecimento das vidas das crianças. As crianças gostam de ouvir histórias umas das outras. Porque cada história dá algum conhecimento na vida dessa criança, as crianças acreditam que são parte de uma turma ou uma aula dinâmica. Histórias podem ser contadas noutras horas do dia e, mais uma vez, durante as aulas da matemática, talvez por uma outra criança, para enfatizar a audição e a recordação. A história de cada criança pode ser repetida durante o ano, para estimular a coerência e inclusão contínuas. Os aspectos matemáticos podem ser ampliados, e os pontos da matemática podem ser discutidos noutras áreas disciplinares. As crianças gostam de ouvir as suas histórias sempre repetidas na turma. A utilização de histórias das crianças desta forma, envolve processos de ensino e aprendizagem que desenvolvem o pensamento e a criatividade e facilita e emergente competência mental, oral e escrita com a língua e matemática.

Um professor de turma fez os seguintes comentários: Em anos diferentes, diferentes temas foram apresentados pela turma e a partir de outras actividades não matemáticas que estamos a fazer. Num ano, começamos com a história de uma criança, cuja avó fez e vendeu rebuçados no México. Nós trabalhamos em várias histórias sobre o empacotamento de rebuçados para compra e venda, fizemos rebuçados utilizando a receita da avó e fizemos uma venda da preparação a uma outra classe. Todo o currículo da matemática desse ano foi desenvolvido em torno destas e de outras histórias sobre a compra e venda. Num outro ano, na turma da primeira classe, começámos com uma criança cujo cão estava no México. O avô dá ao cão cinco ossos por dia. Fizemos várias histórias sobre quantos ossos o Paco tinha tido e sobre a alimentação e os cuidados de outros animais. Para enriquecer essas histórias, nós podemos trazer pessoas da comunidade de negócios, bem como membros de família, para falarem aos alunos sobre a matemática nas suas vidas e nos seus trabalhos.

ENTENDER, OUVIR E DESCREVER: O professor desenvolve primeiro o entendimento de toda a turma da história da criança, pedindo que outras crianças repitam a história pelas suas próprias palavras e para perguntar e responder questões sobre a história. Esta fase facilita a audição, a memória e a participação, bem como a compreensão. O professor instrui que as crianças façam perguntas sobre aspectos matemáticos da história. As crianças desenvolvem boas capacidades nas perguntas sobre uma situação. Fazer perguntas é normalmente a parte mais difícil da escrita de um problema oral para as crianças, e, portanto, a modelação e a prática da turma na colocação de questões ajudam em grande medida. Crianças menos avançadas podem participar bem nesta fase.

Uma professora descreveu a sua experiência da seguinte forma: Não me foi fácil passar da antiga matemática de papel e lápis ao desenvolvimento de uma linguagem de pergunta para apoiar o entendimento da matemática. Encorajar os alunos a formularem os seus problemas e as suas respostas, a encerem situações, a trabalharem por vezes aos pares, e pedir que os alunos explique o seu pensamento da matemática, pode ser uma luta. Mas, se nós quisermos que as crianças se sintam à vontade a assumir riscos, nós também temos que assumir estes riscos. Muitas vezes, a frustração precede a visão, para as crianças e os professores. Esta tarefa de entendimento da matemática é mais facilitada quando nós trazermos as experiências das crianças para a turma. O significado emerge do contexto e da possibilidade de conexão.

APRESENTAR UMA HISTÓRIA EM TERMOS MATEMÁTICOS: Depois de ouvir uma história, o professor, sente-se nos seus potenciais aspectos matemáticos apresentando uma história que contenha uma realidade complexa e atributos mundiais, mas omite vários elementos não matemáticos. Algumas crianças voltam a contar esta história nas suas próprias palavras e perguntam e respondem a questões sobre a mesma, para que a turma compreenda esta nova versão. Esta informação é, em seguida, mais limitada a uma situação particular que ocorre no contexto da história. As crianças colocam questões sobre diferentes tipos de situações de problemas, uma das quais será escolhida para representar um problema oral típico. Depois deste processo ser concluído, o professor pode utilizar apenas partes do processo em alguns dias.

Um professor relatou o seguinte cenário: Na minha turma da segunda classe, as crianças contaram várias histórias sobre ir à loja com a sua família. Depois, as crianças geraram várias perguntas eventuais sobre a situação e fizeram problemas orais em torno da situação.

RESOLVER, REFLECTIR E EXPLICAR UM PROBLEMA: Em seguida, a turma passa para a fase da solução de problemas, na qual as crianças resolvem problemas individualmente, aplicando as suas próprias formulações matemáticas. O centro da solução de problemas é a compreensão da situação. A elaboração da situação engaja as crianças nesta análise. Nos princípios deste nível, as crianças aprendem a fazer representações marcadas que demonstram os aspectos matemáticos da situação com círculos ou outras formas, segmentos de linha e espaçamento. A marcação com letras ou palavras liga as partes da representação à situação. Esses modelos representados ajudam as crianças a compreenderem situações, a reflectirem sobre o seu próprio método de solução e problemas e a explicar os seus passos de solução (ver figura 1). Essas explicações dão aos professores uma compreensão do pensamento matemático das crianças e ajudam os alunos a aprenderem um do outro. Estas interacções coerentes, ampliadas e significativas, engajam os alunos e ajudam-nos a fazer conexões entre os conceitos matemáticos e a linguagem nas suas práticas culturais quotidianas e nos seus conceitos, seus vocabulários e suas anotações matemáticas emergentes.

Um professor explica as suas constatações: Quando os alunos estão a trabalhar, eu observo-os a trabalharem no quadro e passo à volta, ouvindo e verificando o trabalho das crianças nos seus lugares. Vejo quem tem soluções diferentes para explicar e que está com problemas. Por vezes, os alunos trabalham e discutem com um parceiro para que possam aprender do pensamento dos outros. Ouvir os seus diálogos dá-me uma compreensão do seu pensamento e de como posso ampliar a sua compreensão. Quando um par de alunos explica o seu trabalho, eu faço menos perguntas a alunos avançados para estes iniciarem. Desta forma, mesmo que apenas a nível da descrição, o aluno pensa que ele ou ela tenha contribuído. Outras crianças perguntam sobre um método, se elas não tiverem compreendido. Este é um aspecto crucial que faz a conversa matemática focar-se simplesmente em mim e cria interacção directa de aluno para aluno. Depois de um método ter sido descrito, normalmente pergunto quantos seguiram este método. Esta [táctica] aumenta o interesse, o envolvimento e a análise de métodos. "O meu método é o mesmo ou diferente?" Nós muitas vezes discutimos a positividade ou a fraqueza diferentes. Depois de alguns métodos correcto eu selecciono uma ou duas respostas erradas para discutir, a fim de que as confusões subjacentes possam ser esclarecidas. Utilizando as representações matemáticas das crianças, faço com que todas as crianças sejam ouvintes activas na conversa.

O PROCESSO DE CONSTRUÇÃO: A conversa da turma é construída por todos os alunos envolvidos. Os participantes activos numa conversa dirigem essa conversa em certas direcções. Cada contribuição estimula o pensamento. Ao longo da conversa, os significados pessoais são continuamente construídos e reconstruídos de forma que possam ser influenciados pelo processo da turma. A história e o clima emergentes do grupo apoiam o sentido de todos os participantes em como a conversa é um produto comum do grupo criado e partilhado por todos os membros. Todos os alunos da turma consolidam e contribuem para um ambiente no qual todos ajudam todos a aprenderem - algumas vezes de forma activa, e outras através de apoio emocional.-- ao mesmo tempo que esperam pacientemente que uma outra pessoa contribua. Assim, a crescente aprendizagem matemática de cada aluno é resultado do pensamento, de histórias e de explicações de todos os alunos. O professor desempenha um papel importante na criação, na manutenção e na utilização deste sentido da história matemática da turma. Esta história partilhada reside no respeito mútuo e no reconhecimento explícito da importância da participação e das contribuições de cada aluno. As interacções colaborativas forjam a compreensão dos participantes da língua, das representações, das anotações e das estruturas conceituais matemáticas que são suficientemente comuns para permitir conversas significativas, utilizando os emergentes "significados partilhados" (Cobb e Bauersfeld 1995). O professor orienta as crianças na reflexão em grupo e individual sobre os seus significados pessoais e facilita pensamento crítico e tomada de decisões. Essas conversas esflorecem em turmas que inspiram a aprendizagem, apoiam a auto-regulação das crianças, consolidam a auto-confiança e proporcionam respostas aos progressos de aprendizagem.

Uma professora fez estas observações: A minha abordagem ao ensino da matemática envolve os alunos a sentirem-se livres de se expressarem, desempenhando um papel activo no processo de ensino e aprendizagem. Tento dar aos alunos tempo suficiente para assimilarem e contribuírem com ideias. Trabalho no sentido de criar um sentimento de "família" de pertencerem à turma, para que os alunos prestem atenção um ao outro e para que se ajudem mutuamente. É importante encorajá-los a serem autónomos, a procurarem significados, a se ajudarem a articular perguntas e a ganharem sentido das suas necessidades. Isso cria um ambiente de aprendizagem que seja estimulante e tolerante, mas cheio de excitação para avançarem. É também importante que se ajude os alunos a aprenderem como ajudar os outros. Eles são muitos e sou um só. Numa turma construída, a mesma irá participar em ajudar um aluno que está a lutar com algum conceito ou alguma solução. Este esclarecimento aprofundado de conceitos ajuda a todos. Os alunos começam a ver coisas a partir de um ponto de vista do outro. Com a ajuda do professor, os alunos normalmente apoiam-se uns aos outros e os erros são vistos como uma oportunidade para a solução e a apresentação de novos problemas. Uma tal abordagem permite o professor avaliar como e o que a turma aprendeu, e como reforçar esta compreensão.

CONCLUSÃO: Ouvir as crianças a apresentarem as suas histórias num contexto matemático, utilizar as representações matemáticas marcadas das crianças e seus números representados, e esclarecer explicações das crianças sobre como resolver problemas, são abordagens potenciais. Mas, essas abordagens precisam de liderança constante pelo professor, para que as crianças possam progredir no seu conhecimento dos métodos, do vocabulário e do entendimento matemáticos. O currículo CMW apoia os professores nestes esforços. As experiências de ensino e aprendizagem são adaptadas aos participantes e permitem-lhes presidir e tornar-se competentes na matemática.

MATERIAL ADICIONAL: Os leitores são encorajados a enviar manuscritos apropriados para este departamento, ao editor. A investigação indicada nesta dissertação foi apoiada pela Fundação Nacional da Ciência (NSF - FNC) sob o número RED 935373, a Fundação Spencer, e a Fundação James S. MacDonnell. As opiniões expressas nesta dissertação são as dos autores e não reflectem necessariamente os pareceres do NSF, da Fundação Spencer, ou da Fundação James S. MacDonnell.

Para mais informações sobre o projecto dos Mundos da Matemática nas Crianças, ou do seu currículo, contacte Karen C. Fuson no (847) 491 3794, ou fuson@nwu.edu, ou escreva para ela para School of Education and Social Policy, Northwestern University, 2115 North Campus Drive, Evanston, IL 60208.

BIBLIOGRAFIA:
Cobb, Paul, and Heinrich Bauersfeld, eds. The Emergence of Mathematical Meaning: Interaction in Classroom Cultures. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1995.___

De la Cruz, Yolanda. "Promisiong Research, Programs, and Projects: Reversing the Trend: Latino Families in Real Partnerships with Schools". Teaching Children Mathematics 5 (January 1999): 2906?300.____

Fuson, Karen C., K. Hudson, and Pilar Ron. "Phases of Classroom Mathematical Problem? Solving Activity: The PCMPA Framework for Supporting Algebraic Thinking in Primary School Classrooms". In Employing Children's Natural Powers to Build Algebraic Reasoning in the Context of Elementary Mathematics, edited by J. Kaput, Hillsdale, N.J.: Lawrence Erlbaum Associates, in press._____

Fuson, Karen C., Ana Maria Lo Cicero, K. Hudson, and Steven T. Smith. "Snapshots across Two Years in the Life of an Urban Latino Classroom". In Making Sense: Teaching and Learning Mathematics with Understanding, edited by James Hiebert et al., 129?59. Portsmouth, N.H.: Heinemann, 1997._____

Fuson, Karen C., Ana Maria Lo Cicero, Pilar Ron, and L. Zecker. "El Mercado: A Fruitful Narrative for the Development of Mathematical Thinking in a Latino First? And Second?Grade Classroom". Forthcoming._____

Fuson, Karen C., Steven T. Smith, and Ana Maria Lo Cicero. "Supporting Latino First Graders' Ten?Structured Thinking in Urban Classrooms". Journal for Research in Mathematics Education 28 (December 1997): 738?60._____

Hudson, K., and N. Kendall. Building upon Knowledge of the Community and of Students to Improve the Mathematics Classroom. Chicago, III.: American Educational Research Association, 1997._____

Lo Cicero, Ana Maria, Karen C. Fuson, and Martha Allexsaht? Snider. "Mathematising Children's Series, Helping Children Solve Word Problems, and Supporting Parental Involvement". In Changing the Faces of Mathematics: Perspectives on Latinos, edited by Luis Ortiz?Franco. Reston, Va.: National Council of Teachers of Mathematics, 1999._____

Lo Cicero, Ana Maria, and K. Hudson. The Arts as Pathways toward Mathematical Thinking in Urban Elementary Classrooms. Chicago, III.: American Educational Research Association, 1997.

Ron, Pilar. ""Spanish?English Language Issues in the Mathematics Classroom". In Changing the Faces of Mathematics: Perspectives on Latinos, edited by Luis Ortiz?Franco. Reston, Va.: National Council of Teachers of Mathematics, 1999_____

Vygotsky, L. S. "The Genesis of Higher Mental Functions". In the Concept of Activity in Soviet Psychology, edited by James V. Wertsch, 168. Armonk, N. Y.: M. E. Sharpe, 1981.

FIGURA 1: REPRESENTAÇÕES MATEMÁTICAS MARCADAS DAS CRIANÇAS: Haviam 12 moscas no quintal. Depois um sapo comeu 3, mais tarde outras 5 moscas vieram. Quantas moscas estão no quintal agora? _____ O palhaço deu ao meu irmão 7 balões vermelhos e alguns balões verdes. Ao todo, o meu irmão obteve 13 balões. Quantos balões verdes ele obteve? _____ Desenhei 3 casas em cada folha de papel. Eu tinha 4 folhas de papel. Quantas casas desenhei no total?

AUTORAS: Ana Maria Lo Cicero, Yolanda De La Cruz e Karen C. Fuson.
Ana Maria Lo Cicero e Karen Fuson, fuson@nwu.edu, ensinam na Northwestern University, Evanston, IL 60208. Yolanda De La Cruz, ydelacruz @asu.edu, ensina na Universidade do Estado de Arizona West, Phoenix, AZ 85069. Lo Cicero trabalha com crianças e professores para desenvolver actividades de turma no apoio do seu desenvolvimento matemático e pessoal. Fuson estuda como as crianças pensam em termos matemáticos e concebe actividades de aprendizagem para consolidar o pensamento de crianças a fim de que todas elas atinjam o seu potencial. De La Cruz examina como ultrapassar falhas na aprendizagem da matemática em estudantes latinos. Editado por Tad Watanabe, Towson State University, Departamento da Mathemática, Towson, MD 21204.

FONTE: Ensino da Matemática às Crianças - 5 no 9 544?7 Maio'99: O publicador da Revista é detentor dos direitos do autor deste artigo, e é reproduzido com autorização. Mais reprodução deste artigo em violação dos direitos do autor é proibida.

TEXTO RETIRADO DE UM SITE PORTUGUÊS, POR ISSO ALGUMAS PALAVRAS ESTÃO COM GRAFIA DIFERENTE DO PORTUGUÊS BRASILEIRO.